Tag Archive: Healthcare eTraining


Questioning strategies in Healthcare Training develop critical thinking, decision making, and problem solving in students. Bloom’s taxonomy of the six levels of cognitive learning can be used to provide a framework for creating questions. Bloom’s taxonomy starts from the simplest level of learning to the most complex level.  Simplest levels denote Knowledge and Complex levels denote Evaluation.

Sample Question for Knowledge Test:

Intravenous Urogram

Knowledge Test

Asking a learner to define Intravenous Urogram, (IVU) would test his/her knowledge levels.

Sample Question for Evaluation:

Intravenous Urogram

Complex Evaluation

A question is posed to the learner to  assess a request to perform an IVU on a patient allergic to iodine. Experiential activities/ simulations can be built to guide the learner in decision making. In this case, the learner gets to immerse in a simulated scenario, evaluate patient vitals, reports and assess the conditions under which an Iodine-allergic patient can be subjected to Intravenous Urogram.

Studies:

A baccalaureate nursing program study determined what proportion of terminal objectives for clinical nursing courses are high level objectives (analysis, synthesis, evaluation), and are the kinds of questions asked by teachers and students during clinical conferences of a high level also.  Despite the fact that stated objectives specified higher cognitive-level thinking, lower-level questions comprised 98.94% of the total number of questions asked by teachers and students in the clinical conferences surveyed.

Another study was performed within an Australian nursing program to examine clinical teachers’ use of questioning strategies.   The teachers’ years of classroom and clinical teaching experience, years of clinical experience, and academic qualifications were studied to see if an association between various qualifications and levels of questions existed.  Bloom’s taxonomy of the cognitive domain was used as a framework for the study.  The findings revealed clinical teachers asked more low-level questions (91.2%) than high-level questions (4.4%).

Lower level questioning do not promote critical thinking as they only trigger recall of information in the learner’s mind.  A simple recall of information does not enhance students’ understanding of the information in a meaningful way. Higher level questioning facilitates the development of critical thinking because it is aimed at higher cognitive levels, which involves application, analysis, synthesis and evaluation.   Educators should take advantage of stimulating questions more often to help create meaningful active learning instead of just prompting the simple recall of knowledge from students.

One of the basic objective for any  training program is to ‘maintain the capability to learn and grow’. Especially, in a set up where continous and multiple training programs are being developed and delivered, it becomes essential for the trainers to engage and stimulate the learner brain in a fundamental way, so that it keeps engaged, alert and adventure-seeking.

While designing an elearning program, or any training program, STANDARDIZATION is the last thing I would like to do. Standardization kills the excitement.

The brain is a high-speed assumptive device that loves to run ahead of sensory perception. Imagine watching a movie. As an exciting scene is percieved by our brains, our brain starts creating assumptions. It starts creating storyboards of future scenes. A stimulated brain learner more. The learning rate here is high. 

Only when it watches a dull and uninteresting scene, it lays dull and that is symbolic of low learning rates.

The brain is interested in reconstructing environments and is always looking for the surprising, unusual or different, says Michael M. Merzenich, chief scientific officer of Posit Science.

Life today is already so equipped- with tools, technologies and information availability. It has become more or less, so very predictable. We plan, we do, we get. There is a certain lack of unusualness, surprising and thrilling.

Learning and Training cannot be built or delivered with the standardized usual feel. “The more you engage your brain in ways that stimulate it, the more you’re doing to maintain your capacity to learn and to improve. It’s actually right at the heart of maintaining yourself in a fundamental sense”, Merzenich says.

People tend to take more breaks when they perform same, boring tasks- essentially predictable tasks. It is the nature of the task that prompts the engagement of the worker.

5 things that help eLearning maintain efficient learning rates

1. No to Standardization, Go to newness
2. Every minute be the First minute of your training program
3. Add distinctiveness to every chapter/ program
4. Challenge the learner brain with surpise-elements
5. Add variations in problems you let the brain face

Roll back to 1985, when Chip Morningstar and Joseph Romero in designing LucasFilm’s multi-palyer online game Habitat.  This is when the word ‘Avatar’ was coined in its then context. Since then Avatars, Actors and Characters have some terms that describe the virtual representation of the player or user in varied contexts.

In the recent years, a stigma of focused effort has been constituted to establish a social context between the learner and the learning platform (be it any form of learning content).

In simple and practical terms, a Character or Avatar creates a social representation of a real person into a designated role within the learning program. Relating this to the current Healthcare Learning and Educational landscape, the involved persons are majorly Physicians, Students, Clinicians, Academicians and other allied healthcare professionals. Each individual applies to its specific competency role in the industry.

As we speak about the industry specific title, each title is entitled to a role which performs its designated role in a Practice-Based environment. A Practice-Based environment demands only and only Practice in Practical.

The challenge here is how does e-Learning transform learning to be virtual yet practical. How can e-Learning in it’s inorganic matter deliver results similar to that of organic and practical methods.

Avatars play the bridging role here. An Avatar can play various social roles.

Expert/ Instructor/ Coach: Here the character is modeled after an expert or knowledgeable human – most commonly a senior surgeon, professor, training manager/head or expert in the field such as a regulation,etc. Effective use of this role with the help of an Avatar ensures social engagement between the character (Avatar) and the student through a conversational tone, interaction, and feedback.

Learner/ User: An Avatar of learning establishes the emotional presence of the learner into the learning scenario. It simulates the learner’s belongingness within the learning context and situation. An Avatar created with situational and curriculum based contextual engagement allows the emotive mind of the learner to dwell into imaginative and experiential learning.

C0-learners or Peers: Avatars of co-learners or learning buddies create a sense of being accompanied. It helps eliminate the loneness factor of the learner and builds a scope of togetherness into the learning environment.

Immersive e-learning

In the study, We Learn Better Together: Enhancing e-Learning with Emotional Characters (2005) by Heidi Maldonado et al., it is discovered that the presence of a Co-learner resulted in learners performing better. Students with a Co-learner scored significantly higher than students without a Co-learner.

There are experts and then there are instructional experts who have brought a huge value by proposing various best-practice instructional approaches to aid web-based science education and training. All such instructional theorems and hypothesis contribute to the foundation grid lines of online training and education.

While physical models and virtual 3 D models deciphers a great value for teaching Fundamentals of Electrons in Atoms and Molecules; the greater need has always been to empower students to read, research and discover underlying facts of such subjects.

Leveraging from emerging e-learning technologies and tools, e-learning inventors have produced innovative and immersive discovery tools that cater to the above said need.  Leading educators like Wiley, Elsevier and other scientific innovators have transformed model-based training methods to discovery-based simulation applets.

A Case Example:

To teach the Motion of  a Projectile, a simulation can be created as an applet. The “Reset” button brings the projectile to its initial position. You can start or stop and continue the simulation with the other button. If you choose the option “Slow motion”, the movement will be ten times slower. You can vary (within certain limits) the values of initial height, initial speed, angle of inclination, mass and gravitational acceleration. Below is an example of similar instruction as created at Walter Fendt.

Another interesting example can be seen at Glovico.org. Glovico provides a social business platform to learn and teach languages. Teachers are native language experts who decide their coaching prices. Students get the liberty to choose teachers based on prices and ratings.

I remember learning about Set Theory and Venn Diagrams in the late 90’s by reading text books and practicing exercises on paper notebooks. I feel envious of what technology has brought to today’s mathematics students. Utah State University has been creating interactive mathematics exercises that allow Discovery-Based learning for student. Using applet-based intuitive functions and guided instruction, students can explore and attempt randomized mathematical problems.

It is heartening to see technology and learning instructions blending into exploratory tools that encourage and empower learners to adopt online learning and training through a Scientific-Discovery based instructional approach. For all ages to come, I firmly believe, in way or other, this would be the best instructional approach to any subject of training, majorly for science education and training.

US healthcare has seen a recent uproar in making healthcare benefits available and accessible to the common. US President Barack Obama has signed his landmark healthcare bill into law in a ceremony at the White House. After a heated debate, the House of Representatives voted 219-212 late on Sunday to send the 10-year, $938bn bill to Mr Obama. Not one Republican voted for the bill, and some Democrats also voted against it.

While so much turmoil over restructuring healthcare benefits and standards, the governing membrane of the healthcare segment still remains restricted and conventional. Possibly it is the most apprehensive industry that has sustained its reluctance to achievement through innovation. The seed of healthcare is born at the advocacy level, where education and practise still remains aloof of the technology advancements.

When industries like retail, heavy manufacturing, etc have long adopted reaping lucrative benefits of technology facilitation, healthcare remains hard-shelled to its old functions and practices of education and practice training.

There is a surging need for healthcare associations, advocacies to direct thought leaders and advocacy leaders to resort to a permmiable membrane that allows open-consortium proposition and evaluation of tools and technologies that can advance healthcare delivery right from the foundational level.

Only then the efforts exercised at the political-governance level yield effective results through enhanced practice and care reforms and benefit the end common man.