Tag Archive: elearning


Scenario- based learning stages a context, within which learners live and work in their everyday life. It’s based on the concept of situated cognition, which is the idea that knowledge can not be developed and fully understood independent of its context(Randall 2002). Scenario-based learning puts the student in a situation or context and exposes them to issues, challenges and dilemmas and asks them to apply knowledge and practice skills relevant to the situation (www.ucl.ac.uk).

Scenario- based learning has particular advantages for practice- based discipline areas where the experience of practitioners is especially relevant to what constitutes knowledge and understanding in the field. Using scenario-based learning in the field of Healthcare has brought forward many such advantages to learners that count on practical experience in everyday activities.

Let us consider a case where Indira Gandhi National Open University conducted such a scenario-based learning project. 10 academic programs were chosen to be included into this project.

The following frame work was given to develop the scenarios:
1. Define critical competencies for graduates of the program
2. Identify learning outcomes for students in the program
3. Identify learning context and develop suitable learning scenarios that reflect the events in life and work of persons who have acquired these competencies
4. Define learning activities assessable and non assessable tasks.
5. Identify all learning resources and instructional opportunities
6. Identify and define cooperative and collaborative learning opportunities using technologies.
7. Identification and definition of opportunities for feedback and remediation.

Let us study a sample scenario as an example:

Discipline: Civil Engineering

Topic: Structural Analysis

Learning Objectives:

1) To distinguish between static and dynamic loads
2) To conceptualize the influence lines
3) To differentiate between Influence Line Diagram (ILD) and Bending Moment Diagram (BMD)

Scenario:

It was a shining morning of October. All students of your class are in cheerful mood traveling to Roorkee in Jan- Shatabdi Express for educational trip with Prof. Dutta.
Suddenly, you feel a shock as train stops abruptly. While waiting for the train to re- start, it is leant that due to some accident on the bridge ahead, the train will not move at least for next 5 hrs.
Out of curiosity you all move to the accident site with Prof Datta. You observe that there is a lot of distortion of the track and even the rails have gone out of place. While discussing the reasons of track failure, Amit points out the presence of visible cracks in the side beam
of the bridge. Suresh asks Prof. Datta whether the bridge failure is due to excess loading.

In turn, Prof. Datta asks the students, whether they remember different types of loading on the structures. You all start naming the different types of loading, you have seen earlier.

Learning Activity 1:

a) List out the different types of loading on structures.
b) Categorize the above list into static and dynamic loads.

After going through the list, Prof. Dutta asks you that why the live loads are not considered as dynamic load when the movement of goods and human beings are considered in the live load.

Learning Activity 2:

Identify the characteristics of static loads and dynamic loads.

Prof. Datta asks the learners to tie a rope across two poles tightly. He then asks Suresh to hang four bricks at four different places and observe the deflected shape of the rope.

Simulation 1: Prof Datta asks you to remove the three bricks from the rope starting from the right pole and observe the deflection of rope at mid point.

simulation activity

Simulation 2: The he asks to repeat the same exercise by moving the brick at points B, C , D and E subsequently and observe the deflection at mid point each time.

simulation activity

Conclusion: The whole scenario-based learning program was developed to be very challenging and was able to completely immerse the learners into the learning cycle.

 

One of the basic objective for any  training program is to ‘maintain the capability to learn and grow’. Especially, in a set up where continous and multiple training programs are being developed and delivered, it becomes essential for the trainers to engage and stimulate the learner brain in a fundamental way, so that it keeps engaged, alert and adventure-seeking.

While designing an elearning program, or any training program, STANDARDIZATION is the last thing I would like to do. Standardization kills the excitement.

The brain is a high-speed assumptive device that loves to run ahead of sensory perception. Imagine watching a movie. As an exciting scene is percieved by our brains, our brain starts creating assumptions. It starts creating storyboards of future scenes. A stimulated brain learner more. The learning rate here is high. 

Only when it watches a dull and uninteresting scene, it lays dull and that is symbolic of low learning rates.

The brain is interested in reconstructing environments and is always looking for the surprising, unusual or different, says Michael M. Merzenich, chief scientific officer of Posit Science.

Life today is already so equipped- with tools, technologies and information availability. It has become more or less, so very predictable. We plan, we do, we get. There is a certain lack of unusualness, surprising and thrilling.

Learning and Training cannot be built or delivered with the standardized usual feel. “The more you engage your brain in ways that stimulate it, the more you’re doing to maintain your capacity to learn and to improve. It’s actually right at the heart of maintaining yourself in a fundamental sense”, Merzenich says.

People tend to take more breaks when they perform same, boring tasks- essentially predictable tasks. It is the nature of the task that prompts the engagement of the worker.

5 things that help eLearning maintain efficient learning rates

1. No to Standardization, Go to newness
2. Every minute be the First minute of your training program
3. Add distinctiveness to every chapter/ program
4. Challenge the learner brain with surpise-elements
5. Add variations in problems you let the brain face

A must read for all who care about transforming knowledge into WISDOM.

Are Other People’s Graphics Better Than Yours? Here’s What to Do About It.

There was a time
when instructional designers didn’t need to worry about graphics.
Among other things, the skills and tools were highly specialized,
which meant that instructional designers or technical writers wrote
and graphic artists did graphics.

Today, almost every
authoring tool contains a graphic drawing component, and your boss
knows it. “Hire a graphic artist? You’ve got to be kidding me.
Why can’t you do it yourself?”

Of course, there
are a number of reasons why you shouldn’t have non-graphical people
doing their own graphics, but if you think that your boss will have a
change of heart and hire a professional graphic designer to help with
your project, you may be making a big mistake.

It would be better
for you to learn a few reasons why graphics that other people create
are better than your graphics, and to take the steps needed to make
your graphic images appear more professional.

Left brain versus right brain

As a rule, when you
write descriptions of processes or procedures, you use your left
brain, but graphic designers utilize their right brains (creativity)
more than their left.

Does that mean you
cannot create your own graphics? Absolutely not. But you should be
aware that it will be easier to create your graphics if you separate
the two tasks. Write your text first, and then review it later with a
focus on graphics – and with your mind in right-brain mode.

As you review the
text, identify “visual clue” words that lend themselves to
graphics. For example, if the text describes a program that runs
under another program or within a certain operating system, “under”
and “within” are visual clue words that will help you to create
an appropriate graphic.

Some specific guidelines

There are a number
of fine points in the use of graphics that will give your production
a more professional appearance. Here are the key ones.

Orientation

Gradients

Fonts

Arrows and Arrow lines

Colors

Photos

White space

Will your graphics ever be better than
other people’s graphics?

If you are patient and practice these
skills, it won’t be long before someone says, “Hey, that’s
pretty nice
!” And then you’ll know you can wear that Graphic
Designer hat proudly as you create your own graphics.

Read more at www.learningsolutionsmag.com

 

Survey of over 5,400 specialists, PCPs on Physicians Consulting Network indicates 2/3 own smartphones, 1/4 have tablets

Amplify’d from www.knowledgenetworks.com

New York, NY; March 31, 2011: For pharmaceutical companies marketing to health care professionals, going mobile is only part of the story. New research by Knowledge Networks using the Physicians Consulting Network (PCN®) shows that doctors are seeking a combination of digital and in-person marketing. Specialists and PCPs alike are relying more and more on smartphones and tablets to check email, research medications and conditions, and take online surveys; but they still prefer in-person visits with drug sales reps over electronic pharma marketing (“e-detailing”) by a factor of three to one.

Drawing on responses from 5,490 doctors, the 2011 Digital MD Marketing research shows that

  • 67% of PCPs and 61% of specialists now have a smartphone (64% of doctors overall)
  • 27% of PCPs and specialists alike have tablet computers (such as iPads) – about 5 times the level in the general population
  • Shopping and survey taking via mobile devices have grown significantly since 2010, but “e-detailing” grew less dramatically and is less common
  • Reference applications, such as Epocrates and WebMD, are the most popular mobile medical “apps” – while apps from pharmaceutical manufacturers receive minimal use

Read more at www.knowledgenetworks.com

 

Landamatics, or Algo-Heuristic Theory as it was originally called, was developed by Lev Landa in the early 1950’s.

Landa (1975) said, “It is common knowledge that pupils very often possess knowledge that is necessary in a certain subject, but they cannot solve problems. Psychologists and teachers often explain this by saying that their pupils do not know how to think properly, they are unable to apply their knowledge, the processes of analysis and synthesis had not been formed in their minds, . . .”.

Landa believes knowledge is made up of three elements:

1. image – the mental picture of an object,

2. concept – the knowledge of the characteristics of an object,

3. propositions – the relationships the object and it’s parts to other objects.

Specification of Theory
(a) Goals and preconditions
Problem-solving:
Processes – Sets of operations: Operations are transformations of (or changes to) material objects or mental models.

(b) Principles
1. It is more important to teach algo-heuristic processes versus prescriptions.
2. Processes can be taught through prescriptions and demonstrations of operations. (Operations = changes of mental or material knowledge)
3. Discovery of processes is more valuable than providing formulated processes.
4. Individualize instruction.

(c) Condition of learning
1. Instructional processes are influences directed by a “teacher” and directed at transformation. (teacher refers to any teaching agent, live or material, i.e. books, AV, computer)
2. Instructional processes are affected by teacher actions or instructional operations.
3. Instructional processes can be affected by certain conditions.
– external conditions, student psychology, teacher knowledge
4. There are three types of instructional rules: descriptive, prescriptive, and permissive. Descriptive rules are statements about what occurs. Prescriptive rules are statements about what should be done. Permissive rules indicate possible alternatives to prescriptive rules.

(d) Required media
None

(e) Role of facilitator
Teaching involves solving instructional problems; the teacher has to determine and perform actions that should be executed in order to meet objectives.

(f) Instructional strategies
Determining Content

1. Uncover process underlying expert learners and mastery level performers.
2. Describe the process with a hypothetical descriptive model.
3. Test the correctness of the model.
4. Improve the model if necessary.
5. Optimize the model if possible.
6. Design the final algorithmic or non-algorithmic process to allow the learners to perform on a mastery level.
7. Identify learning procedures leading to the development of algorithm or heuristic performance.
8. Design algo-heuristic teaching procedures.
9. Design algo-heuristic based training materials.
10. If necessary, create a computer-based or other media based programmed instruction.
11. Design methods for evaluation.

Instructional Method 1 – The step-by-step approach
1. Present the procedure to the student and demonstrate problem solving.
2. Develop the first operation.
3. Present a problem that requires the first operation and practice that operation.
4. Develop the second operation.
5. Present a problem that requires application of both operation and practice.
6. Develop the third operation.
7. Present a problem that represents all three problems.
8. Proceed until all problems are mastered.

Instructional Method 2 – Developing individual operations
1. Determine whether the student understands the meaning of a direction in the a prescription and its operations.
If yes:
2. Present a problem that requires application of the problem.
3. Name the operation (give the learner a self-command) before he/she executes the problem.
4. Present the next problem and have the learner give the command internally.
5. Continue practicing the operation until mastery.
If no:
2. Explain what the student does not understand.
3. Test the correctness of understanding and allow for practice. Provide extra explaination and practice.
4. Go to #2 under “yes” above.

(g) Assessment method
Student is able to complete the operation at a mastery level.

Application– Complex Sciences such Neurosciences.

strategic knowledge in neuroscience represented as an algorithm

Testimonials–  Allstate’s claim processing operation improved productivity 75% and quality 90%.

Instructional Design is the practice of maximizing the effectiveness, efficiency and appeal of instruction and other learning experiences.

Instructional Design as a Process:

Instructional Design is the systematic development of instructional specifications using learning and instructional theory to ensure the quality of instruction. It is the entire process of analyzing learning needs and goals and the development of a delivery system to meet those needs.

Instructional Design as a Discipline:

Instructional Design is a branch of knowledge concerned with research and theory about instructional strategies and the process for developing and implementing those strategies.

Instructional Design as Reality:

Instructional design can be started at any stage in the design process. Often a outline of an idea is developed to give the foundation of an instruction-situation. By the time the entire process is done the designer reviews back and checks to see that all parts of the “science” have been taken into consideration. Then the entire process is documented as if it occurred in a systematic fashion.

Instructional Technology:

Instructional technology is the systemic application of strategies and techniques derived from behavioral, cognitive, and constructivist theories to the solution of instructional problems.

Instructional Technology = Instructional Design + Instructional Development

Next Episode: How Many Instructional Design Models for E-Learning do we know.


Google has brought many a resourceful applications through Google Labs.

Google Earth is a virtual globe, map and geographical information program that was originally called EarthViewer 3D, and was created by Keyhole, Inc, a company acquired by Google in 2004. The product was re-released as Google Earth in 2005.

Google launched the Google Maps API in June 2005 to allow developers to integrate Google Maps into their websites.

The list goes long with Google books, calendar, news, search, videos, wave and so on.

Last year Google launched its new high-tech 3D product- Google Body. Google Body is a detailed 3D model of the human body. You can peel back anatomical layers, zoom in, and navigate to parts that interest you. Click to identify anatomy, or search for muscles, organs, bones and more.

One can also share the exact scene being viewed by copying and pasting the corresponding URL.

Google Body, which is already available in web form, can now run on Android tablets that use the 3.0 Honeycomb version of Google’s mobile operating system. Using 3D graphics capabilities of the latest tablets such as Motorola’s Xoom, the hardware is now good enough to properly display a 3D-heavy app such as Google Body, which lets you look at your organs, muscles and bones.

It looks like a pretty cool way to explore the human body – just like earth or maps, you can strip away layers (i.e. skin, bones, etc.), rotate it in 3D, and search for body parts before having them highlighted in the app. Teachers are gonna have a gala time giving anatomy classes to students.

There are experts and then there are instructional experts who have brought a huge value by proposing various best-practice instructional approaches to aid web-based science education and training. All such instructional theorems and hypothesis contribute to the foundation grid lines of online training and education.

While physical models and virtual 3 D models deciphers a great value for teaching Fundamentals of Electrons in Atoms and Molecules; the greater need has always been to empower students to read, research and discover underlying facts of such subjects.

Leveraging from emerging e-learning technologies and tools, e-learning inventors have produced innovative and immersive discovery tools that cater to the above said need.  Leading educators like Wiley, Elsevier and other scientific innovators have transformed model-based training methods to discovery-based simulation applets.

A Case Example:

To teach the Motion of  a Projectile, a simulation can be created as an applet. The “Reset” button brings the projectile to its initial position. You can start or stop and continue the simulation with the other button. If you choose the option “Slow motion”, the movement will be ten times slower. You can vary (within certain limits) the values of initial height, initial speed, angle of inclination, mass and gravitational acceleration. Below is an example of similar instruction as created at Walter Fendt.

Another interesting example can be seen at Glovico.org. Glovico provides a social business platform to learn and teach languages. Teachers are native language experts who decide their coaching prices. Students get the liberty to choose teachers based on prices and ratings.

I remember learning about Set Theory and Venn Diagrams in the late 90’s by reading text books and practicing exercises on paper notebooks. I feel envious of what technology has brought to today’s mathematics students. Utah State University has been creating interactive mathematics exercises that allow Discovery-Based learning for student. Using applet-based intuitive functions and guided instruction, students can explore and attempt randomized mathematical problems.

It is heartening to see technology and learning instructions blending into exploratory tools that encourage and empower learners to adopt online learning and training through a Scientific-Discovery based instructional approach. For all ages to come, I firmly believe, in way or other, this would be the best instructional approach to any subject of training, majorly for science education and training.

A great example is when American Medical Association House of Delegates met in an interim meeting in November. The outcome was a thoughtful first step, strawman maybe, but definitely a great initiative toward structuring Observable and Accountable Social Media Policies that turn in to the best interest of the entire practice and patient community.

Amplify’d from www.ama-assn.org

Social media use should mirror face-to-face patient dealings

Social media sites such as Facebook and Twitter can be easy, effective and efficient ways for physicians to connect with their patients, colleagues and others in the outside world. Unfortunately, those sites also can be easy, effective and efficient ways for physicians to get themselves in trouble with their patients, colleagues and others in the outside world.
The tricky part of social media is figuring how to maintain the sort of energetic and personalized presence expected on the sites without stepping over the line into legal and ethical troubles, or without saying something inappropriate that merely reflects badly on yourself.
The policy outlines some considerations doctors should make before they venture into social media — or should make now that they’re involved with it. The guidance covers not only professionalism in social media, but also professionalism for any online presence a physician might have.

Among the policy’s recommendations:

  • Physicians should not post identifiable patient information online and should otherwise be aware of standards of patient privacy and confidentiality that should be maintained in every setting, including online. Any interaction with patients online, as it is in the real world, should be in accordance with professional guidelines affecting the patient-physician relationship.
  • Physicians should use any available privacy settings on social media and other websites, but they also should realize that safeguards are not absolute, and that any content put online is likely to stay there permanently. Therefore, doctors routinely should monitor their Internet presence (such as by running their name through a Google search) to make sure their personal and professional information on their own sites — and others’ — is accurate and appropriate.
  • To make it eas
  • ier to maintain professional boundaries, physicians should consider separating personal and professional presences on social media and elsewhere online.
  • If physicians see colleagues posting content that appears to be unprofessional, they should alert the doctors so they can remove it or take whatever appropriate action is necessary. If the doctors do not take action, and the content significantly violates professional norms, physicians must report the matter to the appropriate authorities.
  • Physicians must recognize that any social media presence and actions online can negatively affect their reputations and consequences for their medical careers. The same goes for physicians-in-training and medical students.
  • Read more at www.ama-assn.org