Tag Archive: continuing medical education


Scenario- based learning stages a context, within which learners live and work in their everyday life. It’s based on the concept of situated cognition, which is the idea that knowledge can not be developed and fully understood independent of its context(Randall 2002). Scenario-based learning puts the student in a situation or context and exposes them to issues, challenges and dilemmas and asks them to apply knowledge and practice skills relevant to the situation (www.ucl.ac.uk).

Scenario- based learning has particular advantages for practice- based discipline areas where the experience of practitioners is especially relevant to what constitutes knowledge and understanding in the field. Using scenario-based learning in the field of Healthcare has brought forward many such advantages to learners that count on practical experience in everyday activities.

Let us consider a case where Indira Gandhi National Open University conducted such a scenario-based learning project. 10 academic programs were chosen to be included into this project.

The following frame work was given to develop the scenarios:
1. Define critical competencies for graduates of the program
2. Identify learning outcomes for students in the program
3. Identify learning context and develop suitable learning scenarios that reflect the events in life and work of persons who have acquired these competencies
4. Define learning activities assessable and non assessable tasks.
5. Identify all learning resources and instructional opportunities
6. Identify and define cooperative and collaborative learning opportunities using technologies.
7. Identification and definition of opportunities for feedback and remediation.

Let us study a sample scenario as an example:

Discipline: Civil Engineering

Topic: Structural Analysis

Learning Objectives:

1) To distinguish between static and dynamic loads
2) To conceptualize the influence lines
3) To differentiate between Influence Line Diagram (ILD) and Bending Moment Diagram (BMD)

Scenario:

It was a shining morning of October. All students of your class are in cheerful mood traveling to Roorkee in Jan- Shatabdi Express for educational trip with Prof. Dutta.
Suddenly, you feel a shock as train stops abruptly. While waiting for the train to re- start, it is leant that due to some accident on the bridge ahead, the train will not move at least for next 5 hrs.
Out of curiosity you all move to the accident site with Prof Datta. You observe that there is a lot of distortion of the track and even the rails have gone out of place. While discussing the reasons of track failure, Amit points out the presence of visible cracks in the side beam
of the bridge. Suresh asks Prof. Datta whether the bridge failure is due to excess loading.

In turn, Prof. Datta asks the students, whether they remember different types of loading on the structures. You all start naming the different types of loading, you have seen earlier.

Learning Activity 1:

a) List out the different types of loading on structures.
b) Categorize the above list into static and dynamic loads.

After going through the list, Prof. Dutta asks you that why the live loads are not considered as dynamic load when the movement of goods and human beings are considered in the live load.

Learning Activity 2:

Identify the characteristics of static loads and dynamic loads.

Prof. Datta asks the learners to tie a rope across two poles tightly. He then asks Suresh to hang four bricks at four different places and observe the deflected shape of the rope.

Simulation 1: Prof Datta asks you to remove the three bricks from the rope starting from the right pole and observe the deflection of rope at mid point.

simulation activity

Simulation 2: The he asks to repeat the same exercise by moving the brick at points B, C , D and E subsequently and observe the deflection at mid point each time.

simulation activity

Conclusion: The whole scenario-based learning program was developed to be very challenging and was able to completely immerse the learners into the learning cycle.

 

Body Physics is where disparate systems share with each other under one single platform.

Google Plus

Collaboration Life

Perhaps Google took  a lesson to converge all sharing systems into one giant platform. Google is creating an unified army for battle. Google’s services are soon going to inter-collaborate into one giant social platform, and in the process steal some teeth from Facebook.

“We’d like to bring the nuance and richness of real-life sharing to software. We want to make Google better by including you, your relationships, and your interests. And so begins the Google+ project”, says  Vic Gundotra, Senior Vice President, Engineering at Google.

 

 

+Circles: share what matters, with the people who matter most

 

Circle around life

What’s in it: You share different things with different people. So sharing the right stuff with the right people shouldn’t be a hassle. Circles makes it easy to put your friends from Saturday night in one circle, your parents in another, and your boss in a circle by himself – just like real life.

Google Speaks:  “What do people actually do?” And we didn’t have to search far for the answer. People in fact share selectively all the time—with their circles.
From close family to foodies, we found that people already use real-life circles to express themselves, and to share with precisely the right folks. So we did the only thing that made sense: we brought Circles to software. Just make a circle, add your people, and share what’s new—just like any other day.

+Sparks: strike up a conversation, about pretty much anything

 

Sparking Life

What’s in it: Tell Sparks what you’re into and it will send you stuff it thinks you’ll like, so when you’re free, there’s always something cool to watch, read, or share.

Google Speaks: The web, of course, is filled with great content—from timely articles to vibrant photos to funny videos. And great content can lead to great conversations. We noticed, however, that it’s still too hard to find and share the things we care about—not without lots of work, and lots of noise. So, we built an online sharing engine called Sparks.

 

 

+Hangouts: stop by and say hello, face-to-face-to-face

 

Hangout with life

What’s in it: With Hangouts, the unplanned meet-up comes to the web for the first time. Let specific buddies (or entire circles) know you’re hanging out and then see who drops by for a face-to-face-to-face chat. Until teleportation arrives, it’s the next best thing.

Google Speaks: Just think, when you walk into the pub or step onto your front porch, you’re in fact signaling to everyone around, “Hey, I’ve got some time, so feel free to stop by.” Further, it’s this unspoken understanding that puts people at ease, and encourages conversation. But today’s online communication tools (like instant messaging and video-calling) don’t understand this subtlety. With Google+ we wanted to make on-screen gatherings fun, fluid and serendipitous, so we created Hangouts.

+Mobile: share what’s around, right now, without any hassle

 

Mobility in life

What’s in it: Taking photos is fun. Sharing photos is fun. Getting photos off your phone is pretty much the opposite of fun. With Instant Upload, your photos and videos upload themselves automatically, to a private album on Google+.  All you have to do is decide who to share them with.

Google Speaks: Getting photos off your phone is a huge pain, so most of us don’t even bother. Of course pictures are meant to be shared, not stranded, so we created Instant Upload to help you never leave a photo behind. While you’re snapping pictures, and with your permission, Google+ adds your photos to a private album in the cloud. This way they’re always available across your devices—ready to share as you see fit.

+Mobile-
+Huddle: Huddling your groups in

 

Huddle in Life

What’s in it: Texting is great, but not when you’re trying to get six different people to decide on a movie. Huddle turns all those different conversations into one simple group chat, so everyone gets on the same page all at once. Your thumbs will thank you.

Google Speaks: Phone calls and text messages can work in a pinch, but they’re not quite right for getting the gang together. So Google+ includes Huddle, a group messaging experience that lets everyone inside the circle know what’s going on, right this second.

Google Hopes you join in, but its entirely +You.

One of the basic objective for any  training program is to ‘maintain the capability to learn and grow’. Especially, in a set up where continous and multiple training programs are being developed and delivered, it becomes essential for the trainers to engage and stimulate the learner brain in a fundamental way, so that it keeps engaged, alert and adventure-seeking.

While designing an elearning program, or any training program, STANDARDIZATION is the last thing I would like to do. Standardization kills the excitement.

The brain is a high-speed assumptive device that loves to run ahead of sensory perception. Imagine watching a movie. As an exciting scene is percieved by our brains, our brain starts creating assumptions. It starts creating storyboards of future scenes. A stimulated brain learner more. The learning rate here is high. 

Only when it watches a dull and uninteresting scene, it lays dull and that is symbolic of low learning rates.

The brain is interested in reconstructing environments and is always looking for the surprising, unusual or different, says Michael M. Merzenich, chief scientific officer of Posit Science.

Life today is already so equipped- with tools, technologies and information availability. It has become more or less, so very predictable. We plan, we do, we get. There is a certain lack of unusualness, surprising and thrilling.

Learning and Training cannot be built or delivered with the standardized usual feel. “The more you engage your brain in ways that stimulate it, the more you’re doing to maintain your capacity to learn and to improve. It’s actually right at the heart of maintaining yourself in a fundamental sense”, Merzenich says.

People tend to take more breaks when they perform same, boring tasks- essentially predictable tasks. It is the nature of the task that prompts the engagement of the worker.

5 things that help eLearning maintain efficient learning rates

1. No to Standardization, Go to newness
2. Every minute be the First minute of your training program
3. Add distinctiveness to every chapter/ program
4. Challenge the learner brain with surpise-elements
5. Add variations in problems you let the brain face

Roll back to 1985, when Chip Morningstar and Joseph Romero in designing LucasFilm’s multi-palyer online game Habitat.  This is when the word ‘Avatar’ was coined in its then context. Since then Avatars, Actors and Characters have some terms that describe the virtual representation of the player or user in varied contexts.

In the recent years, a stigma of focused effort has been constituted to establish a social context between the learner and the learning platform (be it any form of learning content).

In simple and practical terms, a Character or Avatar creates a social representation of a real person into a designated role within the learning program. Relating this to the current Healthcare Learning and Educational landscape, the involved persons are majorly Physicians, Students, Clinicians, Academicians and other allied healthcare professionals. Each individual applies to its specific competency role in the industry.

As we speak about the industry specific title, each title is entitled to a role which performs its designated role in a Practice-Based environment. A Practice-Based environment demands only and only Practice in Practical.

The challenge here is how does e-Learning transform learning to be virtual yet practical. How can e-Learning in it’s inorganic matter deliver results similar to that of organic and practical methods.

Avatars play the bridging role here. An Avatar can play various social roles.

Expert/ Instructor/ Coach: Here the character is modeled after an expert or knowledgeable human – most commonly a senior surgeon, professor, training manager/head or expert in the field such as a regulation,etc. Effective use of this role with the help of an Avatar ensures social engagement between the character (Avatar) and the student through a conversational tone, interaction, and feedback.

Learner/ User: An Avatar of learning establishes the emotional presence of the learner into the learning scenario. It simulates the learner’s belongingness within the learning context and situation. An Avatar created with situational and curriculum based contextual engagement allows the emotive mind of the learner to dwell into imaginative and experiential learning.

C0-learners or Peers: Avatars of co-learners or learning buddies create a sense of being accompanied. It helps eliminate the loneness factor of the learner and builds a scope of togetherness into the learning environment.

Immersive e-learning

In the study, We Learn Better Together: Enhancing e-Learning with Emotional Characters (2005) by Heidi Maldonado et al., it is discovered that the presence of a Co-learner resulted in learners performing better. Students with a Co-learner scored significantly higher than students without a Co-learner.

Google has brought many a resourceful applications through Google Labs.

Google Earth is a virtual globe, map and geographical information program that was originally called EarthViewer 3D, and was created by Keyhole, Inc, a company acquired by Google in 2004. The product was re-released as Google Earth in 2005.

Google launched the Google Maps API in June 2005 to allow developers to integrate Google Maps into their websites.

The list goes long with Google books, calendar, news, search, videos, wave and so on.

Last year Google launched its new high-tech 3D product- Google Body. Google Body is a detailed 3D model of the human body. You can peel back anatomical layers, zoom in, and navigate to parts that interest you. Click to identify anatomy, or search for muscles, organs, bones and more.

One can also share the exact scene being viewed by copying and pasting the corresponding URL.

Google Body, which is already available in web form, can now run on Android tablets that use the 3.0 Honeycomb version of Google’s mobile operating system. Using 3D graphics capabilities of the latest tablets such as Motorola’s Xoom, the hardware is now good enough to properly display a 3D-heavy app such as Google Body, which lets you look at your organs, muscles and bones.

It looks like a pretty cool way to explore the human body – just like earth or maps, you can strip away layers (i.e. skin, bones, etc.), rotate it in 3D, and search for body parts before having them highlighted in the app. Teachers are gonna have a gala time giving anatomy classes to students.

Medical Education in the virtual world- A Boston University School of Medicine (BUSM) pilot program

Virtual worlds have rapidly become an immersive tool for medical education and training. BMC piloted a post-graduation medical education program in the virtual world. Their objectives were:

1. to explore the potential of a virtual world for delivering CME
2. determine possible instructional designs using Second Life for CME
3. determine the limitations of Second Life for CME
4. measure participant learning outcomes and feedback

The program:

BMC started with an existing BUSM Second Life build that was built earlier as a joint project with WHO. The virtual location was a private island which was later modified to an outdoor with no roof, open walkways and automatic seating.

The Recruits:

To keep the attendance low, 14 physicians were selected for this pilot. Out of 14, 8 were female primary care physicians. Participants resided in different states namely NC, IL, CA, MA, SC, CT, KY. Out of 14, 3 were already experienced in second life and hence remaining 11 were trained on using second life.

The Instructional Design:

Immersive e-learningA 40-minute insulin therapy lecture was created with focus on key concepts, added visual elements, strategic questions (to be answered by chat). Two mock diabetic patients were designed. A backchat was created where every avatar in the immediate vicinity would hear (read as a call-out) the chat.

The session was programed to be conducted on Monday, June 15, 2009 from 7 PM to 8 PM. The session officially ended at 8 PM but participants stayed until 8.30 PM socializing. Overall the program was successful and the objectives were met at the collection of feedback gathered.

Detailed readings at http://www.jmir.org/2010/1/e1/

Healthcare institutions spend enormous time and effort to train their workforce. Web-based training can streamline this process to a great extent. The article evaluates the advantages of healthcare professionals with web-based training.

Large healthcare facilities are required to educate their workforce about various regulations and to document this training. Initiatives like the Privacy Rule of the Health Information Portability and Accountability Act (HIPAA) and the National Patient Safety Goals of the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) are just two recent examples. In addition, health care professionals require training on equipment, skills and software. Using traditional methods such as instructor- led classes to train a large and diverse workforce is time consuming, expensive and labor-intensive. Webbased training can potentially overcome these limitations.

Web-based training provides learners with any-time access to the training courses, is self-paced, eliminates the need to travel, is less disruptive for the work schedule, and can decrease the time associated with learning by as much as o 30%. Moreover, it can substantially save time for the faculty and instructors since web-based training can be developed once and delivered multiple times across various locations. Published studies evaluating web-based education and training have shown that web-based education is at least as effective as traditional education, that it is likely to be more efficient and that learners enjoy it more. These advantages make web-based training a very attractive option for training healthcare personnel efficiently and effectively. Furthermore, many hospitals and clinics are upgrading their information technology infrastructure as they increasingly adopt electronic health records. This infrastructure can also support the utilization of web-based training.

Training healthcare professionals is not an easy task due to inherent characteristics such as shift work, moderate to high employee turnover, and the difficulty in organizing group-training sessions due to conflicts with clinical responsibilities . Web-based training can be deployed for healthcare workforce spread over different geographic areas, without compromising learner satisfaction. At InfoPro, we developed a comprehensive suite of web-based courses on various therapeutic areas. These courses were developed using print based medical literature and presenation kits used in medical symposiums as reference curriculum materials. Our client was able to train about 18,000 professionals, including physicians, researchers, pharmacists, nurses, nutritionists and trainees in these fields, across different hospital systems within a short span of two months. Satisfaction ration was over three-quarters of the attendants. Learners were very satisfied with web-based training and most of them felt that the course was relevant and helpful for enhancing their understanding of the subject.

In addition to time savings and enhanced 24-hour access to courses, web-based training can also yield a good return on investment (ROI).

Studies suggest that web-based training can reduce up to 70% of employers’ training budgets by eliminating employee travel from offsite locations, cost of updating printed materials, and reducing the amount of time that employees spend overall in the training activity.

Moreover, as institutions increasingly adopt electronic health records, they will need to upgrade their hardware infrastructure, which will also support the deployment of web-based training without incurring significant overhead cost. Thus, we believe that well-designed web-based training can yield an excellent ROI for healthcare systems challenged with perennial workforce training and the need for increased documentation for regulatory compliance.