Tag Archive: computer-assisted instruction


I received an email today…

Dear XYZ,

After much consideration, we’ve decided that it is time to shutdown Amplify. On behalf of the team, I want to thank you for being part of our journey. It is important to us that we shut down the service in the most responsible and considerate manner possible. Towards that end there are two things that you should consider:

  • First, we’ve arranged with Clipboard (a new service under entirely different ownership and management) to give you an account on their service, which is currently accessible by invitation-only. You can accept this invitation and register your account now.
  • Second, from the registration page, Clipboard will allow you to easily request that your old clips be preserved in Clipboard. If you don’t want them converted, then do nothing. We can’t guarantee that we’ll be able to convert all of your older clips, but if the demand is sufficient, we will do our best.

They say, “We’ve had a wonderful run and we are grateful to everyone for taking the journey with us…….Clipboard will hold Amplify’s databases in trust and if there is sufficient interest they will provide a migration tool to import Amplify clips into Clipboard.”

Wonderful run? And no thought of the audience? Is this the birth of the death of social media?

Seriously, I do not want to join another Social Platform that predates to grow. Goodluck Clipboard!!!

Scenario- based learning stages a context, within which learners live and work in their everyday life. It’s based on the concept of situated cognition, which is the idea that knowledge can not be developed and fully understood independent of its context(Randall 2002). Scenario-based learning puts the student in a situation or context and exposes them to issues, challenges and dilemmas and asks them to apply knowledge and practice skills relevant to the situation (www.ucl.ac.uk).

Scenario- based learning has particular advantages for practice- based discipline areas where the experience of practitioners is especially relevant to what constitutes knowledge and understanding in the field. Using scenario-based learning in the field of Healthcare has brought forward many such advantages to learners that count on practical experience in everyday activities.

Let us consider a case where Indira Gandhi National Open University conducted such a scenario-based learning project. 10 academic programs were chosen to be included into this project.

The following frame work was given to develop the scenarios:
1. Define critical competencies for graduates of the program
2. Identify learning outcomes for students in the program
3. Identify learning context and develop suitable learning scenarios that reflect the events in life and work of persons who have acquired these competencies
4. Define learning activities assessable and non assessable tasks.
5. Identify all learning resources and instructional opportunities
6. Identify and define cooperative and collaborative learning opportunities using technologies.
7. Identification and definition of opportunities for feedback and remediation.

Let us study a sample scenario as an example:

Discipline: Civil Engineering

Topic: Structural Analysis

Learning Objectives:

1) To distinguish between static and dynamic loads
2) To conceptualize the influence lines
3) To differentiate between Influence Line Diagram (ILD) and Bending Moment Diagram (BMD)

Scenario:

It was a shining morning of October. All students of your class are in cheerful mood traveling to Roorkee in Jan- Shatabdi Express for educational trip with Prof. Dutta.
Suddenly, you feel a shock as train stops abruptly. While waiting for the train to re- start, it is leant that due to some accident on the bridge ahead, the train will not move at least for next 5 hrs.
Out of curiosity you all move to the accident site with Prof Datta. You observe that there is a lot of distortion of the track and even the rails have gone out of place. While discussing the reasons of track failure, Amit points out the presence of visible cracks in the side beam
of the bridge. Suresh asks Prof. Datta whether the bridge failure is due to excess loading.

In turn, Prof. Datta asks the students, whether they remember different types of loading on the structures. You all start naming the different types of loading, you have seen earlier.

Learning Activity 1:

a) List out the different types of loading on structures.
b) Categorize the above list into static and dynamic loads.

After going through the list, Prof. Dutta asks you that why the live loads are not considered as dynamic load when the movement of goods and human beings are considered in the live load.

Learning Activity 2:

Identify the characteristics of static loads and dynamic loads.

Prof. Datta asks the learners to tie a rope across two poles tightly. He then asks Suresh to hang four bricks at four different places and observe the deflected shape of the rope.

Simulation 1: Prof Datta asks you to remove the three bricks from the rope starting from the right pole and observe the deflection of rope at mid point.

simulation activity

Simulation 2: The he asks to repeat the same exercise by moving the brick at points B, C , D and E subsequently and observe the deflection at mid point each time.

simulation activity

Conclusion: The whole scenario-based learning program was developed to be very challenging and was able to completely immerse the learners into the learning cycle.

 

Body Physics is where disparate systems share with each other under one single platform.

Google Plus

Collaboration Life

Perhaps Google took  a lesson to converge all sharing systems into one giant platform. Google is creating an unified army for battle. Google’s services are soon going to inter-collaborate into one giant social platform, and in the process steal some teeth from Facebook.

“We’d like to bring the nuance and richness of real-life sharing to software. We want to make Google better by including you, your relationships, and your interests. And so begins the Google+ project”, says  Vic Gundotra, Senior Vice President, Engineering at Google.

 

 

+Circles: share what matters, with the people who matter most

 

Circle around life

What’s in it: You share different things with different people. So sharing the right stuff with the right people shouldn’t be a hassle. Circles makes it easy to put your friends from Saturday night in one circle, your parents in another, and your boss in a circle by himself – just like real life.

Google Speaks:  “What do people actually do?” And we didn’t have to search far for the answer. People in fact share selectively all the time—with their circles.
From close family to foodies, we found that people already use real-life circles to express themselves, and to share with precisely the right folks. So we did the only thing that made sense: we brought Circles to software. Just make a circle, add your people, and share what’s new—just like any other day.

+Sparks: strike up a conversation, about pretty much anything

 

Sparking Life

What’s in it: Tell Sparks what you’re into and it will send you stuff it thinks you’ll like, so when you’re free, there’s always something cool to watch, read, or share.

Google Speaks: The web, of course, is filled with great content—from timely articles to vibrant photos to funny videos. And great content can lead to great conversations. We noticed, however, that it’s still too hard to find and share the things we care about—not without lots of work, and lots of noise. So, we built an online sharing engine called Sparks.

 

 

+Hangouts: stop by and say hello, face-to-face-to-face

 

Hangout with life

What’s in it: With Hangouts, the unplanned meet-up comes to the web for the first time. Let specific buddies (or entire circles) know you’re hanging out and then see who drops by for a face-to-face-to-face chat. Until teleportation arrives, it’s the next best thing.

Google Speaks: Just think, when you walk into the pub or step onto your front porch, you’re in fact signaling to everyone around, “Hey, I’ve got some time, so feel free to stop by.” Further, it’s this unspoken understanding that puts people at ease, and encourages conversation. But today’s online communication tools (like instant messaging and video-calling) don’t understand this subtlety. With Google+ we wanted to make on-screen gatherings fun, fluid and serendipitous, so we created Hangouts.

+Mobile: share what’s around, right now, without any hassle

 

Mobility in life

What’s in it: Taking photos is fun. Sharing photos is fun. Getting photos off your phone is pretty much the opposite of fun. With Instant Upload, your photos and videos upload themselves automatically, to a private album on Google+.  All you have to do is decide who to share them with.

Google Speaks: Getting photos off your phone is a huge pain, so most of us don’t even bother. Of course pictures are meant to be shared, not stranded, so we created Instant Upload to help you never leave a photo behind. While you’re snapping pictures, and with your permission, Google+ adds your photos to a private album in the cloud. This way they’re always available across your devices—ready to share as you see fit.

+Mobile-
+Huddle: Huddling your groups in

 

Huddle in Life

What’s in it: Texting is great, but not when you’re trying to get six different people to decide on a movie. Huddle turns all those different conversations into one simple group chat, so everyone gets on the same page all at once. Your thumbs will thank you.

Google Speaks: Phone calls and text messages can work in a pinch, but they’re not quite right for getting the gang together. So Google+ includes Huddle, a group messaging experience that lets everyone inside the circle know what’s going on, right this second.

Google Hopes you join in, but its entirely +You.

Roll back to 1985, when Chip Morningstar and Joseph Romero in designing LucasFilm’s multi-palyer online game Habitat.  This is when the word ‘Avatar’ was coined in its then context. Since then Avatars, Actors and Characters have some terms that describe the virtual representation of the player or user in varied contexts.

In the recent years, a stigma of focused effort has been constituted to establish a social context between the learner and the learning platform (be it any form of learning content).

In simple and practical terms, a Character or Avatar creates a social representation of a real person into a designated role within the learning program. Relating this to the current Healthcare Learning and Educational landscape, the involved persons are majorly Physicians, Students, Clinicians, Academicians and other allied healthcare professionals. Each individual applies to its specific competency role in the industry.

As we speak about the industry specific title, each title is entitled to a role which performs its designated role in a Practice-Based environment. A Practice-Based environment demands only and only Practice in Practical.

The challenge here is how does e-Learning transform learning to be virtual yet practical. How can e-Learning in it’s inorganic matter deliver results similar to that of organic and practical methods.

Avatars play the bridging role here. An Avatar can play various social roles.

Expert/ Instructor/ Coach: Here the character is modeled after an expert or knowledgeable human – most commonly a senior surgeon, professor, training manager/head or expert in the field such as a regulation,etc. Effective use of this role with the help of an Avatar ensures social engagement between the character (Avatar) and the student through a conversational tone, interaction, and feedback.

Learner/ User: An Avatar of learning establishes the emotional presence of the learner into the learning scenario. It simulates the learner’s belongingness within the learning context and situation. An Avatar created with situational and curriculum based contextual engagement allows the emotive mind of the learner to dwell into imaginative and experiential learning.

C0-learners or Peers: Avatars of co-learners or learning buddies create a sense of being accompanied. It helps eliminate the loneness factor of the learner and builds a scope of togetherness into the learning environment.

Immersive e-learning

In the study, We Learn Better Together: Enhancing e-Learning with Emotional Characters (2005) by Heidi Maldonado et al., it is discovered that the presence of a Co-learner resulted in learners performing better. Students with a Co-learner scored significantly higher than students without a Co-learner.

There are experts and then there are instructional experts who have brought a huge value by proposing various best-practice instructional approaches to aid web-based science education and training. All such instructional theorems and hypothesis contribute to the foundation grid lines of online training and education.

While physical models and virtual 3 D models deciphers a great value for teaching Fundamentals of Electrons in Atoms and Molecules; the greater need has always been to empower students to read, research and discover underlying facts of such subjects.

Leveraging from emerging e-learning technologies and tools, e-learning inventors have produced innovative and immersive discovery tools that cater to the above said need.  Leading educators like Wiley, Elsevier and other scientific innovators have transformed model-based training methods to discovery-based simulation applets.

A Case Example:

To teach the Motion of  a Projectile, a simulation can be created as an applet. The “Reset” button brings the projectile to its initial position. You can start or stop and continue the simulation with the other button. If you choose the option “Slow motion”, the movement will be ten times slower. You can vary (within certain limits) the values of initial height, initial speed, angle of inclination, mass and gravitational acceleration. Below is an example of similar instruction as created at Walter Fendt.

Another interesting example can be seen at Glovico.org. Glovico provides a social business platform to learn and teach languages. Teachers are native language experts who decide their coaching prices. Students get the liberty to choose teachers based on prices and ratings.

I remember learning about Set Theory and Venn Diagrams in the late 90’s by reading text books and practicing exercises on paper notebooks. I feel envious of what technology has brought to today’s mathematics students. Utah State University has been creating interactive mathematics exercises that allow Discovery-Based learning for student. Using applet-based intuitive functions and guided instruction, students can explore and attempt randomized mathematical problems.

It is heartening to see technology and learning instructions blending into exploratory tools that encourage and empower learners to adopt online learning and training through a Scientific-Discovery based instructional approach. For all ages to come, I firmly believe, in way or other, this would be the best instructional approach to any subject of training, majorly for science education and training.

Medical Education in the virtual world- A Boston University School of Medicine (BUSM) pilot program

Virtual worlds have rapidly become an immersive tool for medical education and training. BMC piloted a post-graduation medical education program in the virtual world. Their objectives were:

1. to explore the potential of a virtual world for delivering CME
2. determine possible instructional designs using Second Life for CME
3. determine the limitations of Second Life for CME
4. measure participant learning outcomes and feedback

The program:

BMC started with an existing BUSM Second Life build that was built earlier as a joint project with WHO. The virtual location was a private island which was later modified to an outdoor with no roof, open walkways and automatic seating.

The Recruits:

To keep the attendance low, 14 physicians were selected for this pilot. Out of 14, 8 were female primary care physicians. Participants resided in different states namely NC, IL, CA, MA, SC, CT, KY. Out of 14, 3 were already experienced in second life and hence remaining 11 were trained on using second life.

The Instructional Design:

Immersive e-learningA 40-minute insulin therapy lecture was created with focus on key concepts, added visual elements, strategic questions (to be answered by chat). Two mock diabetic patients were designed. A backchat was created where every avatar in the immediate vicinity would hear (read as a call-out) the chat.

The session was programed to be conducted on Monday, June 15, 2009 from 7 PM to 8 PM. The session officially ended at 8 PM but participants stayed until 8.30 PM socializing. Overall the program was successful and the objectives were met at the collection of feedback gathered.

Detailed readings at http://www.jmir.org/2010/1/e1/